一、量子密钥分配

量子密钥分配是量子密码学中研究最早、理论和实验成果最多的一个研究领域。量子密钥分配目前主要有两个研究方向:一个是基于连续变量 QKD 的理论和实验研究;一个高速率、高性能的 QKD 理论和技术研究。量子密钥最早研究得分配协议很多是关于两方之间的点对点的密钥分配。然而QKD 实际的实现要求网络中任意用户之间的密钥分配。所以后来人们已研究了利用单光子的多用户 QKD 方案,也提出了使用非正交基的多用户 QKD 方案。

二、量子身份认证

上面所提出的 QKD 均是假设通信方为合法用户的前提下,然而在实际的环境中,有可能有假冒者存在,所以需要考虑通信方的身份认证问题。基本的量子身份认证方案可分为两类,即共享信息型和共享纠缠态型。前者是指通信双方事先共享有一个预定好的比特串,以此来表明自己是合法通信者;而后者是双方共享有一组纠缠态粒子,即双方各自拥有每对纠缠态粒子中的一个,通过对纠缠对进行相应的操作也可以互相表明身份。这里需要强调一点,“共享信息”指经典信息,即经典的比特串。另外,与经典密码学中的身份认证类似,量子身份认证中也可以引入仲裁者,双方可以在仲裁者的帮助下验证身份。

三、量子签名

在量子保密通信的过程中,像经典保密通信一样也会涉及到签名的问题,目前量子通信和量子计算机的研究取得了迅速的进展,特别是量子计算机,它的出现使得对量子比签名成为重要的课题;目前已提出了若干种量子签名方案,主要有基于单向函数的量子签名方案,基于纠缠交换的量子签名方案,基于 GHZ 三重态的量子签名方案。

四、量子加密算法

由量子态叠加原理可知,一个有n个量子位的系统可以制备出 2n 个不同的叠加态,即量子系统有强大的信息存储能力,因此研究量子加密算法有重要意义。量子加密算法经典加密相比具有特殊的优点:密钥可以重用。如果发现通信错误小于一定阈值,则可以将密钥经过保密放大处理后重复使用。目前最多的量子加密算法有:基于经典密钥的量子加密算法和基于量子密钥的量子加密算法。

五、量子秘密共享

把一个秘密消息分割使得单个人不能重构该秘密消息是信息处理特别是高安全应用中常见的任务。现代密码学提供了解决方案--秘密共享。随着 QKD 的发展,人们开始研究多方密钥分配问题,于是很自然的提出了量子秘密共享(QSS)这一新的方向。

QSS 协议有三个主要目标:

① 在多方之间分发秘密密钥;

② 共享经典秘密信息;

③ 共享量子秘密(未知量子态)。

另外对于如何提高秘密共享方案的效率也是人们研究的热点。

量子加密是一种前沿性、战略性的信息安全技术,随着量子计算机的研究与发展使得基于大数的因子分解的经典密码学越来越受到威胁,人们预测,当量子计算机成为现实,经典密码体制将无安全可言。而量子密码术和量子计算机都是根植于量子力学的,只有量子密码术能够抵挡量子计算机的攻击。所以,量子信息安全系统将成为保护数据安全的最佳选择之一。

小知识之千兆赫兹简介:

千兆赫兹,简写为“GHZ”,是交流电或电磁波频率的一个单位,等于十亿赫兹(1,000,000,000 Hz)。千兆赫兹是超高频(UHF)和微波信号的频率指示单位,频率为1GHz的电磁波信号的波长是300毫米。频率为100GHz的电磁波信号的波长是3毫米,约为1/8英寸。